Introduction
Today, machine learning algorithms are used to identify and detect patterns in audio, images and videos. Audio, images and videos can be represented as signals that vary over time and space. The time domain analysis is a representation of a signal as a function of time, i.e. it shows how a signal changes over time and appear as sinusoidal waves. There are a number of independent variables that fully describes a signal and is referred to as degrees of freedom. In the time domain analysis, the degrees of freedom refer to number of samples in the signal.
In the context of applying signals to AI, frequency domain analysis is required to analyze signals with respect to frequency instead of time domain analysis. Frequency domain is used in image processing, speech recognition, feature extraction techniques in machine learning applications and in time series analysis to identify trends and patterns in data.
What is Frequency Domain?
Frequency Domain of an original time signal is a mathematical representation of a signal or data in terms of its frequency components. In other words, it is a way of analyzing a signal by examining the different frequencies that make it up and they appear as distinct impulses. In the frequency domain, a signal is represented as a sum of sinusoidal waves with different frequencies, amplitudes, and phases. In the frequency domain analysis, the degrees of freedom is related to the number of frequency components that make up the signal. The relative strengths of these frequency components can reveal important information about the signal, such as its bandwidth, dominant frequencies, and harmonic content. Some of the key design parameters associated with the frequency domain analysis include sampling rate, windowing function, signal length and the choice of Fourier Transform algorithm.
There is an inverse relationship between time and frequency domain. The desired signal and the undesired signal are separable in the frequency domain and you can use a filter to reject the undesired signal. Also, analyzing signals in the frequency domain can have better computational efficiency than analyzing them in the time domain. This is because many signal processing operations such as filtering, convolution, and correlation, can be performed more efficiently in the frequency domain.